Journal of Organometallic Chemistry, 178 (1979) C30–C32 © Elsevier Sequoia S.A., Lausanne · · Printed in The Netherlands

Preliminary communication

A New Germanium Tetracobalt Carbonyl : $GeCo_4(CO)_{14}$

ROBERT F. GERLACH, KENNETH M. MACKAY, AND BRIAN K. NICHOLSON

School of Science, University of Waikato, Hamilton, New Zealand (Received July 10th, 1979)

SUMMARY

The room-temperature reaction of NaCo(CO), with halogermanes, or of $Co_2(CO)_8$ with GeH₄, gives GeCo₄(CO)₁, which is assigned a Ge[Co₂(CO)₇]₂ structure on infrared evidence. This new species eliminates one CO at 50°C to give (CO)₄CoGeCo₃(CO)₉ and adds further Co(CO)₄⁻ to give anionic [GeCo₆(CO)_n]^{2⁻}.

INTRODUCTION

A number of Group IV-cobalt carbonyls of the $MCo_4(CO)_n$ family have been reported (M = Si,Ge,Sn,Pb). Schmid <u>et al</u> have established that the n=13 members formed by silicon [1] and germanium [2,3] are clusters (CO)_4CoGeCo_3(CO)_9, while tin [4,5] and lead [4] form the n=16 members with the completely open structures M[Co(CO)_4], which do not condense to the n=13 clusters. Schmid [3,6] has discussed this constrasting behaviour in terms of the size of the Group IV atoms.

We now report that germanium forms a third member of the family with n=14 which is stable at room temperature.

RESULTS AND DISCUSSION

When GeI4 and NaCo(CO)4 (ca 1:5 mole ratio) were reacted in 1:2 benzene/hexane

at 25°C for 3 hours a deep brown solution resulted. Filtration, evaporation of solvents, and recrystallisation from $(H_2Cl_2, gave deep-red crystals of$ $GeCo_4(CO)_1, in 50% yield. Similarly, the reaction in Et_20 of NaCo(CO), with$ $<math>Cl_3GeCo(CO)_4$, or $ClGe[Co(CO)_4]_3[7]$ gave $GeCo_4(CO)_1$, as the major product, together with a component showing v_{CO} [2079vs, 2030(m,sh) 2020 vs, 2000 vw] within 2 cm⁻¹ of the frequencies reported for $Sn[Co(CO)_4]_4[5]$. An alternative synthesis of $GeCo_4(CO)_{14}$ involved reaction of GeH_4 with $Co_2(CO)_8$ (1:2 mole ratio) in hexane in a sealed tube for 15 weeks at room temperature. This reaction also yielded a small amount of $(CO)_4CoGeCo_3(CO)_9[2]$. GeCo_4(CO)_1, is a deep-red solid which is stable indefinitely under nitrogen

at -20° C, or for short periods in air. The mass spectrum shows the parent ion (m/e = 698 - 704); 73% of the total ion current is carried by GeCo₄(CO)_n⁺ (n=0-14).

Solid GeCo₄(CO)₁₄ under vacuum slowly evolves CO (1 mole equivalent) at 50°C; after 45 hours near-quantitative conversion to (CO)₄CoGeCo₃(CO)₉[2] is achieved. In hexane solution carbonyl loss is more rapid giving (CO)₄CoGeCo₃(CO)₉ in 2 hours at 55-60°C. Thus Schmid & Etzrodt's isolation of 62% (CO)₄CoGeCo₃(CO)₉ from the reaction between GeBr₄ and NaCo(CO)₄[2] was a consequence of their reaction temperature of 55°C.

We suggest a structure for GeCo₄(CO)₁₄ of the type Ge[Co₂(CO)₇]₂ with the germanium acting as a common bridge replacing one CO in each of two Co₂(CO)₈ units. By comparison with other X₂Ge bridged Co₂(CO)₇ molecules [8], where the dihedral angle between the GeCo₂ plane and the bridging carbonyl plane is about 95°, this would predict C₂ symmetry. However the relatively simple infrared spectrum of GeCo₄(CO)₁₄ [ν_{CO} (hexane) 2079(vs) 2061(m) 2040(m) 2032(s) 2023(m) 2005w 1848m] indicates a higher symmetry structure. One possibility is the approximately D_{2d} arrangement where the bridging CO is in the GeCo₂ plane in each half of the molecule.

Reaction of GeCo₄(CO)₁₄ (or GeCo₄(CO)₁₃) with further Co(CO)₄⁻ [<u>ca</u> 1:2 mole ratio] in CH₂Cl₂ or THF occurred readily to give an anionic species which could be isolated as the Et₄N⁺ salt [ν_{CO} (nujol) 2050(w), 2016(vs), 1836(m), 1804(m)]. The same species was a co-product of the reaction of GeI4 with Co(CO). in benzene/hexane. Accurate analysis proved difficult due to air-sensitivity but preliminary data indicate a Et_4N^+ : Co ratio of 2:6 and confirms the presence of germanium, making a formulation $[\text{Et}_4\text{N}]_2[\text{GeCo}_6(\text{CO})_n]$ most reasonable. This may have a "semi-interstitial" arrangement similar to the iso-electronic $[\text{Co}_6\text{P}(\text{CO})_{16}]^-[9]$.

The rich variety of germanium-cobalt carbonyl chemistry is being further explored and Xray structural analyses of both $GeCo_{4}(CO)_{14}$ and $[GeCo_{6}(CO)_{n}]^{2^{-}}$ are under way.

ACKNOWLEDGMENTS

R.F.G. thanks the N.Z.U.G.C. for a Post-graduate Scholarship and we are grateful to Dr. P. Holland, Ruakura Agricultural Research Centre, for mass spectra.

REFERENCES

- G. Schmid, V. Bätzel and G. Etzrodt, J. Organometal. Chem., 112 (1976) 345.
- 2. G. Schmid and G. Etzrodt, J. Organometal. Chem., 137 (1977) 367.
- 3. G. Schmid and G. Etzrodt, J.C.S. Chem. Comm., (1979) 349.
- 4. G. Schmid and G. Etzrodt, J. Organometal. Chem., 131 (1977) 477.
- 5. D.J. Patmore and W.A.G. Graham, Inorg. Chem. 7 (1978) 771.
- 6. G. Schmid, Angew. Chem. Int. Ed. English, 17 (1978) 392.
- 7. R.F. Gerlach, D. Phil. Thesis, Waikato (1978).
- R. Ball, M.J. Bennett, E.H. Brooks, W.A.G. Graham, J. Hoyano, and S.M. Illingworth, Chem. Comm., (1970) 592; S.A. Fieldhouse, B.H. Freeland and R.J. O'Brien, Chem. Comm., (1969) 1297.
- 9. P. Chini, G. Ciani, S. Martinego, A. Sironi, L. Longhetti and B.T. Heaton, J.C.S. Chem. Comm., (1979) 188.